Articles tagged with "solar-cells"
New Triple-Junction Tandem Perovskite Solar Cell Sets World Record - CleanTechnica
A research team at the University of Sydney has achieved a new milestone in perovskite solar cell technology by developing a triple-junction tandem solar cell that combines two layers of perovskite with silicon. This 16 square centimeter device demonstrated a world-record power conversion efficiency for its size, while a smaller 1 square centimeter "champion" cell reached a record 27.06% efficiency. The triple-junction architecture addresses both efficiency and durability challenges by leveraging the low cost and high efficiency of perovskite alongside the robustness of silicon. Significantly, the smaller cell also set a new standard for thermal stability, passing the International Electrotechnical Commission’s Thermal Cycling test involving 200 cycles between -40°C and 85°C, and retaining 95% of its efficiency after over 400 hours of continuous light exposure. Although these cells are still smaller than typical commercial solar panels, the results demonstrate the potential for scaling up stable, efficient perovskite-based solar devices.
energysolar-cellsperovskitephotovoltaicstandem-solar-cellrenewable-energymaterials-scienceInorganic perovskite solar cells achieve highest efficiency to date
Researchers at Kaunas University of Technology (KTU) in Lithuania have achieved a record efficiency of over 21 percent in inorganic perovskite solar cells by developing a durable protective layer that addresses a major challenge of rapid degradation. This protective layer, formed through a novel passivation technique using perfluorinated 2D ammonium cations, enables strong adhesion to the pure inorganic perovskite surface by creating hydrogen bonds with lead iodide fragments. This breakthrough overcomes previous difficulties in bonding 2D layers to inorganic perovskites, resulting in stable heterostructures that maintain integrity even at elevated temperatures. The improved passivation not only enhances efficiency but also significantly boosts durability. The team demonstrated that mini-modules with an active area over 300 times larger than typical lab cells achieved nearly 20 percent efficiency and sustained stable operation for over 950 hours at 85°C under continuous illumination. These stability results meet stringent commercial standards comparable to silicon solar cells, marking a critical step
energysolar-cellsperovskitematerials-sciencerenewable-energyphotovoltaicspassivation-technologyGlobal record set for large triple-junction perovskite solar cell
Australian researchers led by Professor Anita Ho-Baillie at the University of Sydney have developed the largest and most efficient triple-junction perovskite–perovskite–silicon tandem solar cell to date. The team achieved a certified steady-state power conversion efficiency (PCE) of 23.3% on a large 172-square-foot (16-square-meter) device, marking a global record for large-area cells of this type. On a smaller 0.15-square-inch (1 cm²) scale, they reached an even higher efficiency of 27.06%. These results represent significant advancements in both performance and thermal stability, demonstrating the potential for durable, high-efficiency perovskite solar technology. The triple-junction solar cell stacks three semiconductor layers with different bandgaps to capture a broader spectrum of sunlight than traditional silicon cells. The researchers enhanced stability by replacing commonly used but unstable methylammonium with rubidium to strengthen the perovskite crystal lattice and
energysolar-cellsperovskitetandem-solar-cellpower-conversion-efficiencymaterials-sciencerenewable-energyTiny gold mirror could make solar panels lighter, cheaper, and stronger
Researchers at the International Iberian Nanotechnology Laboratory (INL), in collaboration with Uppsala University, have developed an innovative ultrathin solar cell featuring a nanostructured gold mirror that significantly enhances light trapping and efficiency. By applying a very thin, patterned gold layer coated with aluminum oxide on the back of the cell, the design reflects light back into the cell for a second absorption, boosting efficiency by about 1.5%. The aluminum oxide layer also serves to reduce electrical losses through interface passivation, preventing energy-wasting electron recombination. This approach addresses two major challenges in ultrathin solar cells: improving photon capture and minimizing energy loss, thereby making these cells more practical for real-world applications. The team employed a cost-effective and scalable one-step nanoimprint lithography technique to create the nanostructured mirror, enabling industrial-scale production. Tested on ultrathin ACIGS thin-film solar cells, the new design showed optimal performance when manufactured at 450 °C,
energysolar-cellsnanotechnologythin-film-solargold-nano-mirrorlight-trappingflexible-solar-panelsUNSW Researchers Claim Solar Cell Breakthrough - CleanTechnica
Researchers at UNSW Sydney have announced a significant breakthrough in solar cell technology by harnessing singlet fission to improve silicon solar cell efficiency. Unlike conventional solar cells that convert one photon into a single electron/hole pair, singlet fission enables one high-energy photon to generate two excited electron/hole pairs, effectively doubling the electrical output from the blue portion of the solar spectrum. The team demonstrated that using photochemically stable dipyrrolonaphthyridinedione (DPND) derivatives as the singlet fission material, combined with thin layers of tin oxide and PEDOT:PSS for interface passivation, can create commercially viable singlet fission photovoltaic devices. This approach avoids the instability issues of previously used materials like tetracene. The breakthrough offers a practical pathway to enhance silicon solar cells without the complexity and cost of tandem designs, which require multiple junctions and extensive redesign. Current silicon modules typically achieve efficiencies of 20-25%, but singlet fission could push
energysolar-cellsphotovoltaicssinglet-fissionsilicon-solar-cellsrenewable-energymaterials-scienceUS engineers build transistor-like switch for quantum excitons
University of Michigan engineers have developed the first transistor-like switch that can control the flow of excitons—quantum quasiparticles that carry energy without charge—at room temperature. Excitons form when light excites electrons in semiconductors, creating electron-hole pairs that move together as neutral energy packets. Unlike electrons, excitons do not generate heat through energy loss, making them promising candidates for more efficient computing technologies. The team overcame a major challenge by designing a nanostructured ridge that guides excitons along a controlled path and using electrodes as gates to switch exciton flow on and off, achieving an on-off switching ratio above 19 decibels. This breakthrough opens the door to excitonic circuits that could significantly reduce energy consumption and heat generation in computing systems, addressing current limitations faced by electronics in AI and other demanding applications. The researchers also demonstrated an optoexcitonic switch using light to propel excitons rapidly along the ridge, suggesting potential for faster and cooler data transfer in devices
quantum-excitonsexcitonicsnano-switchenergy-efficient-computingsemiconductor-technologyoptoelectronicssolar-cellsNew bendable solar cells hit 21.6% efficiency under heat, humidity
A European consortium called PEARL has made significant advances in developing flexible, low-cost perovskite solar cells with carbon electrodes, achieving over 21% power conversion efficiency (PCE) on bendable substrates and aiming for a 25% efficiency target. Utilizing roll-to-roll (R2R) manufacturing techniques, the project has demonstrated scalable production methods suitable for flexible, thin-film solar modules. These developments position the technology for applications including building-integrated photovoltaics (BIPV) and Internet of Things (IoT) devices. A key breakthrough is the improved durability of these solar cells, which remain stable for over 2,000 hours under harsh conditions of 85°C and 85% humidity, thanks to a new protective encapsulation. The use of carbon electrodes not only enhances stability but also supports environmental goals by reducing production costs below 0.3 EUR/Wp and minimizing carbon emissions to less than 0.01 kg CO2eq/kWh. Various partners in the
energysolar-cellsperovskiteflexible-electronicsroll-to-roll-manufacturingphotovoltaicscarbon-electrodesSmartlet microrobots coordinate underwater using light signals
Researchers at Chemnitz University of Technology have developed “smartlet” microrobots—tiny, millimeter-scale cube-shaped devices capable of autonomous movement and communication underwater. Constructed from flexible, origami-inspired materials, each smartlet integrates solar cells, onboard processors, micro-LEDs, and photodiodes, enabling them to harvest light for power and use optical signals for communication without external controls. Propelled by bubble-generating engines that control buoyancy, these microrobots can coordinate their actions through light-based signaling, allowing synchronized group behaviors and decentralized control. This innovation marks a significant advance in creating distributed robotic systems that mimic collective intelligence found in nature. By combining energy harvesting and communication in a compact, wireless loop, the smartlets eliminate the need for bulky external equipment like magnets or cameras. The researchers envision diverse applications, including medical diagnostics, environmental monitoring, and soft robotics, where these biocompatible, untethered robots could perform complex sensing and adaptive tasks in fluidic
robotmicrorobotsunderwater-roboticsoptical-communicationsolar-cellsautonomous-systemsdistributed-intelligenceWorld's most powerful X-ray laser spots atomic shifts in solar cells
Scientists at the European XFEL research facility have, for the first time, directly observed atomic-scale deformations inside solar cell materials using the world’s most powerful X-ray laser. Led by Johan Bielecki, PhD, the team captured how electron-hole pairs—created when light excites electrons in a solar cell—cause subtle distortions in the atomic lattice of the material. These tiny deformations, previously undetectable, were visualized using femtosecond-scale X-ray pulses, revealing ultrafast interactions between electron-hole pairs and the crystal lattice. The study focused on quantum dots made of cesium, lead, and bromine (CsPbBr3), where these distortions form a state known as an exciton-polaron. The findings are significant because even minimal lattice deformations critically influence the optical and electronic properties of materials used in solar cells, displays, sensors, and potentially quantum computing components. Zhou Shen, PhD, the study’s lead author, emphasized that understanding these
energysolar-cellsmaterials-scienceX-ray-laserquantum-dotsoptoelectronicsatomic-lattice-deformationUK engineers create solar shield that survive harsh space radiation
UK engineers at the University of Surrey have developed a novel protective coating, termed a “cosmic veil,” designed to shield perovskite solar cells (PSCs) from the harsh radiation environment of space. This coating, made from propane-1,3-diammonium iodide (PDAI₂), stabilizes the fragile organic molecules within PSCs that are typically vulnerable to damage from proton irradiation and other space radiation sources such as galactic cosmic rays and solar energetic particles. By preventing these organic components from breaking down into gases that weaken the cells, the coating helps maintain the cells’ efficiency and structural integrity over long durations. Testing demonstrated that PSCs treated with this coating sustained significantly less efficiency loss and internal damage when exposed to radiation levels simulating over 20 years in low-Earth orbit. This breakthrough addresses a major limitation of PSCs in space applications, where durability and radiation tolerance are critical. While multi-junction III-V solar cells currently dominate space power systems due to their performance
energysolar-cellsperovskitespace-technologyradiation-shieldingphotovoltaicmaterials-scienceFlexible solar cells beat 10,000 bending cycles with 96% efficiency
Researchers at the Korea Institute of Materials Science (KIMS) have developed a flexible perovskite solar cell that combines high efficiency with exceptional mechanical durability and environmental stability. By employing a "defect passivation strategy," they sandwiched the light-absorbing perovskite layer between two protective two-dimensional (2D) perovskite layers. This innovation shields the core material from moisture, enabling fabrication in ambient air conditions with up to 50% relative humidity—overcoming a major hurdle of perovskite’s traditional sensitivity to moisture and eliminating the need for costly controlled environments. The resulting solar cells demonstrate remarkable performance retention, maintaining over 85% of their initial efficiency after 2,800 hours of operation and 96% efficiency after 10,000 bending cycles, highlighting their mechanical resilience. Additionally, in more rigorous shear-sliding tests, the cells preserved 87% efficiency. This durability, combined with the ability to produce the cells in open air, significantly reduces
energysolar-cellsperovskiteflexible-electronicsmaterials-sciencerenewable-energydurabilityJapan’s new solar tech brings film-like panels to fragile rooftops
Japan is developing next-generation, film-type chalcopyrite solar cells designed to be lightweight enough for installation on rooftops with low load-bearing capacity, such as fragile slate roofs. This initiative, a collaboration between green tech startup PXP Inc. and Tokyo Gas Co., aims to launch commercial services by fiscal 2026. The chalcopyrite solar cells weigh less than 1 kg/m², comparable to perovskite solar cells, and offer similar power generation efficiency and durability. The project focuses on optimizing panel structure and construction methods to ensure performance, safety, and durability on roofs previously unsuitable for traditional heavy solar panels. The potential impact of this technology is significant, with an estimated installable capacity of approximately 169 gigawatts on such roofs by 2050—more than double Japan’s current solar capacity. This expansion could help address the slowing pace of solar adoption caused by a shortage of suitable installation sites and structural limitations of existing rooftops. The development also includes research into tandem solar cells
energysolar-powersolar-cellschalcopyriteperovskiterenewable-energycarbon-neutralChina’s dual-faced solar cells hit 23.4% efficiency record, cut power loss dramatically
Researchers in China have developed an innovative approach to significantly improve bifacial perovskite solar cells (Bi-PSCs), achieving a record power conversion efficiency (PCE) of 23.4% while dramatically reducing photon loss—a key factor limiting these cells’ performance. By identifying photon loss as the primary cause of performance degradation, the team introduced a high-quality thick-film deposition method that regulates perovskite crystallization dynamics. This method employs a multifunctional additive, 1-ethyl-3-guanidinium thiourea hydrochloride (EGTHCl), to control nucleation and crystallization in highly concentrated precursor solutions, resulting in dense, uniform, and defect-free perovskite films. The enhanced Bi-PSCs not only reached a record efficiency but also demonstrated remarkable stability, retaining over 80% of their initial performance after more than 2,000 hours of continuous light exposure. This advancement addresses the inherent design challenge of bifacial cells, which use semi-transparent rear
energysolar-cellsperovskitephotovoltaicphoton-lossbifacial-solar-cellspower-efficiencySolar cells on ultra-thin glass to transform energy technology for space
Researchers from Loughborough and Swansea universities are developing lightweight cadmium telluride (CdTe) solar cells deposited on ultra-thin glass to revolutionize energy systems for satellites and space manufacturing. This CdTe-on-glass technology offers a lighter, cheaper, and highly radiation-resistant alternative to the conventional silicon and multi-junction solar cells currently used in space missions. While multi-junction cells dominate due to their high efficiency, their complex manufacturing and high costs limit scalability. The new technology targets 20% efficiency in space and has already achieved 23.1% efficiency on Earth, with initial space testing conducted aboard the AlSat-Nano CubeSat. The collaboration aligns with the UK’s strategic vision to capture a significant share of the growing global space technology market, valued at £17.5 billion in the UK alone. The European Space Agency forecasts a surge in space solar demand from 1 MWp/year to 10 GWp/year by 2035, driven by satellite constellations and
energysolar-cellsspace-technologycadmium-telluridephotovoltaicssemiconductor-materialssatellite-power-systemsFlexible solar cell with record 26.4% efficiency could advance drones
Scientists at the Solar Energy Research Institute of Singapore (SERIS) have developed a groundbreaking ultra-thin, flexible solar cell achieving a world-record power conversion efficiency of 26.4%. This tandem solar cell combines a perovskite top layer, which efficiently captures visible light, with a newly engineered organic bottom layer containing a custom molecule called P2EH-1V that excels at absorbing near-infrared (NIR) light. This innovative design addresses previous limitations in NIR absorption, significantly boosting overall efficiency and outperforming comparable perovskite-organic and perovskite-CIGS cells. The flexible, lightweight nature of these cells makes them ideal for integration into unconventional surfaces, such as wearable electronics, smart textiles, and drones, where weight and form factor are critical. The technology also holds promise for roll-to-roll manufacturing, enabling scalable, low-cost production. Moving forward, the research team aims to improve the operational stability of these cells in real-world conditions and advance toward pilot
energysolar-cellsperovskiteflexible-electronicstandem-solar-cellrenewable-energydrone-technologyBreakthrough solar cells reach 38% efficiency in low indoor light
Scientists at National Yang Ming Chiao Tung University in Taiwan have developed a new type of perovskite solar cell (PeSC) that achieves a remarkable 38.7% power conversion efficiency (PCE) under low indoor lighting conditions of around 2,000 lux, typical of office environments. While traditional silicon solar cells perform better under direct sunlight (up to 26% PCE), these perovskite cells excel in dimmer settings, producing energy even on cloudy days or indoors. The PeSCs are thin, lightweight, flexible, and semi-transparent, offering advantages over rigid and heavy silicon panels, which are limited to flat, durable surfaces. The researchers enhanced the solar cells by adjusting the bandgap through molecular composition changes in the perovskite layers, enabling efficient absorption of indoor light—a capability not achievable with silicon cells. This breakthrough suggests potential applications for powering small devices in indoor or low-light environments, reducing reliance on traditional power sources and expanding solar technology use beyond outdoor
energysolar-cellsperovskiteindoor-lightingphotovoltaicrenewable-energyenergy-efficiencyEye-opening device: Self-powered AI synapse mimics human vision, achieves 82% accuracy
energyAIoptoelectronicssolar-cellsvisual-recognitionlow-power-systemsautonomous-vehiclesSolar cells hit record 19.96% efficiency with 6x cheaper polymer
energysolar-cellsorganic-materialsefficiencysustainable-energypolymer-technologycost-reductionNREL-Led Research Effort Adds Salt, Boosts Performance of Perovskites
energysolar-cellsperovskiterenewable-energyphotovoltaic-technologyefficiencydurability